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Abstract 

Coral reefs support the Maldives’ economy and 
environmental resilience by functioning as natural 
barriers that protect the country's low-lying islands from 
erosion and extreme weather. With increasing coral 
bleaching incidents due to climate change, accurate and 
scalable reef health monitoring has become critical; 
however, existing AI-based methodologies rely heavily 
on datasets from regions ecologically distinct from 
Maldivian reefs, limiting their applicability. This study 
aims to address this regional gap by fine-tuning 
YOLOv8 for coral health detection, specifically 
evaluating performance constraints posed by dataset 
quality. Experiments utilized a publicly available 
16-class annotated dataset from Roboflow for training, 
alongside local images provided by Maldives Resilient 
Reefs for inference validation. Quantitative results 
indicated modest model performance (validation 
mAP50-95 = 0.253, mAP50 = 0.447; test mAP50-95 = 
0.225, mAP50 = 0.406), indicating significant 
challenges inherent in the dataset, such as overlapping, 

inconsistent labels, and annotation errors, which 
compromised model training efficacy. Qualitative 
inference on local Maldivian images demonstrated 
practical viability, although semantic accuracy remained 
limited due to training dataset deficiencies. The study 
identifies dataset quality as the primary obstacle for 
AI-driven coral reef assessments in the Maldives. Its 
primary contribution is to clearly outline necessary 
improvements for future dataset development, including 
the establishment of an ecologically meaningful and 
mutually exclusive taxonomy through expert 
collaboration, rigorous curation and annotation of 
region-specific data, and subsequent comprehensive 
validation. Addressing these dataset difficulties is 
critical to properly applying AI’s potential for effective 
and scalable coral reef monitoring, thereby enhancing 
conservation management strategies in the Maldives. 
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1 INTRODUCTION 
 
The Maldives, a nation of coral atolls, is particularly 
reliant on its reef ecosystems. With 2041 distinct reef 
structures larger than 0.01 km2, including 529 located 
on the rims 17 complex atolls, the Maldives possesses 
one of the most significant coral reef ecosystems 
globally (Naseer & Hatcher, 2004, as cited in Stevens 
and Froman, 2019). Over 80% of its land area lies less 
than one metre above sea level, making coral reefs 
essential natural breakwaters that protect against 
erosion and extreme weather events (Hilmi et al., 2023). 

Additionally, the Maldives’ economy is primarily 

dependent on reef-based tourism and fisheries. (Hilmi et 
al., 2023). Reef fishing in the Maldives has historically 
been small-scale and limited to local requirements, 
however, the rapid development of tourism, particularly 
the construction of resorts and guesthouses, 
substantially increased the demand for reef fish 
(Stevens and Froman, 2019). This expansion has put 
further strain on the country’s reefs, as both tourism and 
fisheries continue to rise; thus, maintaining a balance 
between economic development and reef conservation 
has become increasingly crucial (Stevens and Froman, 
2019). 

Recurrent bleaching of coral reefs due to global 
warming has now become a growing concern (Hughes 
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et al., 2017). Degraded coral reefs are not able to 
withstand the increasing effects of sea level rise and 
global warming compared to healthy and resilient reefs, 
which is especially concerning as the Maldives is the 
lowest-lying nation in the world (Bianchi et al., 2016; 
Hoegh-Guldberg et al., 2007; Hughes et al., 2003; 
Hughes et al., 2007, as cited in Stevens and Froman, 
2019). Effective reef monitoring and conservation 
strategies are therefore essential for biodiversity 

protection, climate resilience, and sustainable resource 
management (Obura et al., 2019). 

This project addresses a critical gap in region-specific 
coral monitoring by fine-tuning Yolo with localized 
Maldivian data, collected in collaboration with the 
Maldives Resilient Reef,  with the aim to deliver 
scalable coral reef conservation tools. 

  

2 BACKGROUND RESEARCH 
 

# Study / 
Year 

Task & 
Dataset 
(Scope) 

Model & Mods Key Metric(s) 
Reported 

Pros Caveats 

1 (Beijbom 
et al., 2012) 

Point‑annotatio
n of 1500 
transect frames 
(Pacific reefs) 

Random forest on 
hand‑crafted 
colour–texture 

83 % point‑level 
accuracy (across sites)  

First large‑scale 
auto‑annotation; 
reproducible 

Still 
∼10 min/img 
manual QC; 
not real‑time 

2 (Beijbom 
et al., 2015) 

4‑reef benthic 
survey 

CoralNet 
semi‑auto CNN 

53 % manual effort 
saved for ≤5 % loss vs 
humans  

Practical 
human‑in‑the‑loo
p workflow 

Var. in 
expert labels 
limits ceiling 
accuracy 

3 (Mahmood 
et al., 2016) 

AUV mosaics, 
11 classes 

AlexNet‑style 
CNN 

86 – 92 % patch 
accuracy (5‑fold)  

Showed deep 
nets beat SVMs 

Training 
patches, not 
object‑level 
detections 

4 (Santoso 
et al., 2022) 

Chaetodontidae 
fish on video 

YOLOv5 vs 
Faster‑R‑CNN vs 
SSD 

YOLOv5 tops at 89 % 
AP, 0.06 s/img  

Real‑time; light 
weight 

Fish only; 
not coral 
classes 

5 (Luz et al., 
2025) 

Tubastraea 
invasion 
(Brazil) 

Vanilla 
YOLOv8n 

90 % precision / 90 % 
recall @ 16 ms (≈62 fps)  

Handles class 
imbalance with 
aug. 

Misses when 
reef heavily 
overgrown 



6 (Rajan & 
Damodaran
, 2023) 

New 
benchmark, 5 
health states 

MAFFN‑YOLOv
5 (attention neck) 

mAP@0.5 = 90.72 %, 
9 ms inference; +8.6 % 
over YOLOv5  

Fastest on Jetson 
NX 
(0.5 ms/frame) 

Custom 
dataset—gen
eralisation 
unclear 

7 (Li et al., 
2024) 

Live‑coral‑cove
r from ROV 
video 

Deeplab‑v3+ × 
Unet ensemble 

mean‑pixel‑acc = 94.47 
%  

First video‑scale 
LCC estimator 

Needs 
stabilised 
footage; no 
object IDs 

8 (Gómez‑Rí
os et al., 
2019) 

Texture vs 
structure 
images 
(RSMAS) 

ResNet‑50 TL 97 % species accuracy  Near‑expert 
taxonomy 

Not 
real‑time; 
high‑res 
images only 

9 (Thamarai 
& Aruna, 
2023) 

RSMAS + 
EILAT 
stressed‑coral 
set 

Ensemble of two 
fine‑tuned CNNs 

90 % overall accuracy  Simple 
architecture 

Needs two 
separate 
nets; no 
localisation 

                                                 ​ Table 1: Literature Review 

 
 

 

Manual reef surveys remain the best method for 
ecological assessments but have inherent limitations in 
scale, cost, and consistency (Chowdhury et al., 2024). 
Traditional OpenCV-based approaches, such as 
color-based segmentation and texture analysis using 
Gabor filters, provide partial automation but often 
require fine-tuning for specific datasets (Stokes & 
Deane, 2009). Early machine learning techniques used 
Support Vector Machines (SVMs) to classify benthic 
features based on hand-crafted feature extraction 
(Shihavuddin et al., 2013), but these approaches 
struggle with variation in underwater images 
(Gonzalez-Rivero et al., 2020). 

Deep learning has revolutionized coral reef monitoring, 
with Convolutional Neural Networks (CNNs) achieving 
accuracy for benthic image classification comparable to 
that of human experts (Mahmood et al., 2016). The first 
large-scale deep learning study on reef monitoring by 
Beijbom et al. (2012) demonstrated 83% accuracy in 
automated coral cover estimation. Follow-up work by 
Beijbom et al. (2015) showed that even semi-automated 
annotation could reduce manual effort by 50% while 
maintaining high accuracy. 

Object detection in coral imagery presents unique 
challenges due to dense object distributions, occlusions, 
and variable lighting conditions (Zhong et al., 2022). 
Among deep learning models, Faster R-CNN (Ren et 
al., 2015) and SSD (Liu et al., 2016) have been applied 
to underwater detection, but their inference speeds limit 
real-time deployment (Santoso et al., 2022). The YOLO 
(You Only Look Once) model series has emerged as a 
leading choice for marine applications due to its 
high-speed, single-stage detection and robustness to 
cluttered environments (Redmon et al., 2016). 

Recent research has validated YOLOv8 for coral reef 
and marine species detection. Luz et al. (2025) applied 
YOLOv8 to detect invasive Tubastraea coral in Brazil, 
achieving 90% precision and recall while operating at 
62 FPS (frames per second). Rajan and Damodaran 
(2023) further optimized YOLOv5 by incorporating 
multi-scale attention mechanisms, improving mAP 
(mean average precision) by 8–18% for coral detection 
tasks. 

Beyond detection, accurate coral health classification is 



essential for tracking factors such as bleaching, disease, 
and recovery. ResNet-50, a 50-layer residual network, 
has demonstrated state-of-the-art accuracy in coral 
health classification (Thamarai & Aruna, 2023).  

Recent studies confirm ResNet-50’s suitability for coral 
classification (Gómez-Ríos et al., 2019; 
Bautista-Hernández et al. 2022). Gómez-Ríos et al. 
(2019) achieved 97% accuracy in distinguishing coral 
species using a ResNet-based approach. 
Bautista-Hernández et al., (2022) applied CNNs to 

detect stony coral tissue loss disease, reaching 94.1% 
accuracy with limited training data. 

Coral reefs exhibit significant regional variability, 
necessitating fine-tuning models with local datasets 
(Chowdhury et al., 2024). Existing reef AI models, such 
as those developed for the Great Barrier Reef or the 
Caribbean, may not generalize well to Maldivian coral 
assemblages (Hilmi et al., 2023). 

 
 

3 EXPERIMENTATION 

This section details the experimental methodology 
employed to fine-tune and evaluate the YOLOv8 object 
detection model for potential application in Maldivian 
coral reef assessment. The primary focus was on 
establishing a reproducible workflow, evaluating 
performance on available annotated data, and 
demonstrating inference capabilities on localized 
imagery. It is important to note that while the 
introduction mentions exploration of ResNet50, the 
empirical results presented subsequently pertain 
exclusively to the YOLOv8 object detection 
experiments. 

3.1 Datasets 

Two distinct datasets formed the basis of this 
investigation: 

3.1.1 Training and Evaluation Dataset​
A publicly available dataset hosted on Roboflow 
Universe, identified as 
coral-research/coral-pathology-vtwfg (version 1, CC 
BY 4.0 license), was utilized for model training, 
validation, and quantitative performance testing. 
Analysis of this dataset's accompanying data.yaml 
configuration file revealed critical structural 
characteristics that significantly influenced the 
experimental outcomes. The dataset specified 16 
distinct class labels: ['Band disease', 
'Band-diseasemultiple', 'Bleached disease', 'Bleached 
disease Healthy Coral_multiple', 'Bleached disease 
White Pox Disease', 'Bleached-disease', 
'Bleached-disease-White-Pox-Disea', 

'Bleached-diseasemultiple', 
'Bleached-diseasemultiple-Health', 'Dead Coral', 
'Healthy Coral', 'Healthy-Coral', 'White Pox Disease', 
'White-Pox-Disea', 'bleached_corals', 'bleachedcorals']. 
This taxonomy exhibits considerable semantic overlap 
(e.g., Healthy Coral vs. Healthy-Coral), inconsistent 
naming conventions (e.g., White Pox Disease vs. 
White-Pox-Disea), and includes compound labels 
attempting to represent multiple simultaneous 
conditions (e.g., Bleached-disease-White-Pox-Disea). 
Such a structure deviates from standard object detection 
practices requiring distinct, mutually exclusive classes 
and poses significant challenges for model training. 
Furthermore, during data loading, approximately 
11-15% of annotated items across the train, validation, 
and test splits were automatically excluded due to 
technical annotation errors (e.g., out-of-bounds 
bounding box coordinates), reducing the effective 
dataset size and introducing noise. 

3.1.2 Local Inference Demonstration Dataset​
An independent set of 83 underwater images acquired at 
the Bodufinolhu reef site, Maldives, was provided by 
the Maldives Resilient Reefs project. This dataset 
served solely as a target for demonstrating the inference 
capabilities (Section 3.4) of the trained model on local 
imagery and was not used during model training or 
quantitative evaluation. 

3.2 Model Architecture and Training Protocol 

The YOLOv8m (medium) architecture, pre-trained on 
the COCO dataset, was selected for fine-tuning, 
leveraging its established balance of performance and 
computational efficiency in related marine applications 
(Luz et al., 2025; Santoso et al., 2022). All experiments 
were conducted using PyTorch v2.7.0 (CUDA 12.6 



backend) and Ultralytics YOLO v8.3.118 on an 
NVIDIA GeForce RTX 4090 GPU. Reproducibility was 
maintained through a fixed random seed (42) and 
deterministic CUDA settings. 

A limited hyperparameter sweep was performed using 
the Roboflow dataset to evaluate the influence of input 
image resolution and batch size. Models were trained 
for 40 epochs under three configurations: (1) 640x640 
resolution, Batch Size 8; (2) 768x768 resolution, Batch 
Size 8; (3) 768x768 resolution, Batch Size 16. Standard 
YOLOv8 training defaults, including data augmentation 
and AdamW optimizer, were employed. The primary 
evaluation metric tracked during training was mean 
Average Precision averaged over IoU thresholds from 
0.50 to 0.95 (mAP50-95) on the validation split. The 
model checkpoint (best.pt) corresponding to the 
configuration yielding the highest validation mAP50-95 
was selected for subsequent analysis. 

3.3 Quantitative Evaluation 

The performance of the selected fine-tuned YOLOv8m 
model was quantitatively assessed using the validation 
and test splits of the 16-class Roboflow dataset. 
Standard object detection metrics, mAP50 and 
mAP50-95, were computed. 

The hyperparameter sweep identified the configuration 
using 768x768 resolution and a batch size of 8 (Run 2) 
as producing the highest validation mAP50-95, 
although overall performance was modest across all 
runs (Table 2). 

Run 
Index 

Img 
Size 

Bat
ch 

Epo
chs 

Val 
mAP50-9
5 

Val 
mAP50 

2 768 8 40 0.253 0.447 

1 640 8 40 0.241 0.439 

3 768 16 40 0.219 0.412 

Table 2: Hyperparameter Sweep Results (Validation Set 
Performance on 16-Class Roboflow Data) 

The promoted model from Run 2 yielded the following 
performance on the dataset splits: 

●​ Validation Set: mAP50-95 = 0.253; mAP50 = 
0.447 

●​ Test Set: mAP50-95 = 0.225; mAP50 = 0.406 

These mAP scores, particularly the mAP50-95 values, 
are substantially lower than typically desired for reliable 
ecological monitoring applications. This outcome is 
interpreted as being directly constrained by the 
fundamental structural flaws and annotation errors 
within the Roboflow dataset used for training. The 
significant difference between mAP50 and mAP50-95 
suggests the model acquired a limited ability for coarse 
localization but struggled with precise boundary 
prediction and, critically, with discriminating between 
the numerous inconsistent and overlapping class 
definitions. Therefore, these metrics primarily quantify 
performance on the ill-defined task presented by the 
dataset, rather than representing the intrinsic potential 
of YOLOv8 for accurately assessing coral health states 
defined by a clean, curated dataset. 

3.4 Inference Pipeline Demonstration 

To verify the technical workflow's applicability to local 
data, the promoted model (trained on the 16-class 
Roboflow dataset) was utilized to perform inference on 
the 83 images from the Bodufinolhu site (Maldives 
Resilient Reefs). The pipeline successfully processed 82 
images, generating annotated outputs. This confirmed 
the operational feasibility of deploying the trained 
model on previously unseen, geographically specific 
imagery. However, the ecological validity and semantic 
interpretation of the detections produced (labelled 
according to the 16 flawed classes) are inherently 
limited due to the training data's deficiencies and 
require qualitative assessment by domain experts. 

 

4 CONCLUSIONS 

This study successfully implemented and validated a 
reproducible computational pipeline for fine-tuning and 
deploying the YOLOv8 object detection model in the 
context of coral reef image analysis. The workflow, 
including automated hyperparameter exploration and 
inference on local Maldivian data, functioned reliably 
from a technical perspective. 



The most critical finding, however, pertains to the 
determinative role of dataset quality. The quantitative 
performance evaluation was severely hampered by 
fundamental issues within the publicly sourced training 
dataset, specifically: (1) a highly inconsistent and 
overlapping 16-class taxonomy unsuitable for robust 
object detection, including redundant and compound 
labels, and (2) a significant rate of technical annotation 
errors (incorrect bounding box coordinates). 
Consequently, the low achieved mAP scores (Test 
mAP50-95 = 0.225) primarily reflect these data 
limitations rather than the inherent capabilities of the 
YOLOv8 architecture. 

This pilot investigation highlights that the most 
immediate and crucial prerequisite for developing 
effective AI-based coral reef monitoring tools for the 
Maldives is the establishment of a high-quality, 
curated dataset. Future efforts must prioritize: 

1.​ Taxonomy Definition: Collaborating with 
local marine ecology experts (such as those at 
Maldives Resilient Reefs) to define a clear, 
consistent, ecologically meaningful, and 
mutually exclusive set of target classes for 
coral health and benthic composition relevant 
to Maldivian reefs. 

2.​ Data Curation: Creating a new, large-scale 
annotated dataset using local imagery based on 
the refined taxonomy, or undertaking a 
rigorous cleaning and re-annotation effort of 
existing resources to conform to these new 
standards. This includes rectifying bounding 
box errors. 

3.​ Model Retraining and Validation: 
Re-training YOLOv8 (or other suitable 
architectures) on the curated dataset and 
performing comprehensive validation across 
diverse Maldivian sites and conditions to 
establish reliable performance benchmarks. 

In summary, while demonstrating a viable technical 
pipeline, this work underscores that meticulous dataset 
development is the foundational bottleneck that must be 
addressed to successfully leverage AI for robust and 
scalable coral reef conservation efforts in the Maldives. 
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Appendix A 
Dataset ,code and code outputs 
 
https://drive.google.com/drive/folders/1MlVmxnByW8Xw5_i
05Fd7FleFi4oq5yhS?usp=drive_link 
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